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SFCTION I 

INTRODUCTION 

For enhancing vertically-incident P-waves,   the application 

of multichannel filter techniques to seismometer systems consisting of 

both horizontal- and vertical-component instruments presents an attrac- 

tive alternative to the use of systems consisting solely of vertical seis- 

mometers.    The advantage of using horizontals is that it permits j. '«-ype of 

noise-reduction processing which (1) exploits coupling between horizontal 

and vertical components of ambient seismic noise and (2) preserves the 

exact form of the P-wave signal. 

In this report we shall discuss the theoretical capabilities 

of systems consisting of a single vertical seismometer v and one or more 

horizontal seismometers h,,   h.,   .   .   .   h. ,.    We shall restrict our atten- 
12 M 

tion to the following type of processing:   we apply to each horizontal seis- 

mometer output h. a linear time-invariant filter g.,  and subtract all of the 
J J 

filter outputs g. ® h. from v to obtain the output o of our processor.    Thus, 

O    =   V gl® hl 2 '   *  gM® hM ^Figure 1-1)- 

Evidently,  this processing scheme leads to no degradation of the P-wave 

signal since the vertically-incident P-wave has no horizontal component. 

In order to achieve maximum noise suppression,  the filters g. must be 

designed in such a way that  (in the absence of signal) 

Lm./   H')]; lim 
T 

dt 

is minimized.   Such optimal filters are called Wiener prediction filters; 

1-1 
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Vertical 
Seismometer 

Horizontal 
Seismometers 

Prediction 
Filters \ 

Figure I-J.    Block Diagram of Processor for Multicomponent 
Seismometer Array 
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they are determined by the matrix equation (Burg,   '964) 

11 21 

9 S 
12 22 

IM    .     .     . 

M1 

'MM .GM 

>   Ä    < 

VI 

fV2 

rVM 

where the G. are the frequency-domain responses of the filters g.,  and 

the f., ,   9 ,  are the auto- and crosspower spectra of the sei. mometer 

traces. 

The simplest processor of this type is the 2-component 

seismometer at point location; i. e. ,  a single vertical seismometer v and 

a single horizontal seismometer h located at the same point un the earth's 

surface.    Here,  the output of the processor is simply 

o  =  v - g © h 

where  g(t) is determined by 

G'£>  =   »vh^hh 

Part 1 of this report is devoted to a detailed consideration of the capabili- 

ties and limitations of this 2-channel processor in ambient trapped-mode 

noise.    The feasibility of using a 2-component seismometer as a P-wave 

enhancer is suggested by the observation that complete suppression of 

noise would be achieved with this system in the ideal situation thav the 

noise is simply a unidirectional single-mode Rayleigh wave.      In that 

case,  v would be purely a convolution of h; that is,  v = k ® h for some 
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function k(t),   and taking g = k,   we get o(t) - U.    One should expect that 

deviation from this ideal performance would be due principally to the 

following factors: 

(1) If the Rayleigh wave field is not unidirectional,  but comes from 

a distribution of azimuths, there will be less than perfect perform- 

ance even if all the noise propagates in a single mode.    In fact,   in Iso- 

tropie noise,  uncorrelated by azimuth,  no noise reduction whatsoever can 

be achieved with the system. 

(2) Realistically, v and h must be assumed to contain components 

of random noise uncorrelated with the Rayleigh waves (e.g. , amplifier 

noise). 

(2)    The presence on the horizontal of Love (SH) waves,   statistically 

independent from the Rayleigh waves, reduces performance.     (One may 

conceive of Love waves on h as a special case of (2),  but it will be seen 

that it may  sometimes be misleading to do so.) 

(4) The amplitude gains of seismometers vary slowly with time; this 

places a limitation on the effectiveness of a system in which the prediction 

filter,  once it has been designed,  is left online for an extended period of 

time. 

(5) Several modes of Rayleigh-type noise may be present,   each having 

a different transfer-function relating the vertical and horizontal component. 

The quantitative effects of (1) through (5) on the prediction 

capability of the 2-ccmponent seismometer at point location are discussed 

in Sections III,  IV,   V,   VI,  and VII,   respectively.    Section II is devoted to 

a summary of communication theoiy formulae and notation used in the rest 

oi the paper. 
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Part II begins in Section IX with a derivation of general 

formulae for the response,  in single-mode noise,   of a planar array of 

seismometers v,  h  .  h_,   ....  hw,  where the horizontals  h. may hav« 
1      2 M j        ' 

arbitrary orientations and may be separated from each other or from 

the vertical v.    Certain arrays of this type will be shown to give good 

Performance even in isotropic noise.    In Section X,  the formulae from 

Section IX are used to calculate the response in isotropic single-mode 

noise (with the possible addition of Love waves) of arrays consisting of 

radially-oriented horizontal seismometers regularly spaced around a 

ring having the vertical seismometer at its center.    It will be shown that 

such array geometries are optimal in a certain sense. 

The sections of this report are,  for the most part,  inde- 

pendent of each other with the following exceptions:   Section II is intended 

for reference only; Section III should be read first; Section IV should be 

read before Section V; and Section IX should be read before Section X. 

1-5/6 
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SECTION II 

COMMUNICATION THEORY FORMULAS AND NOTATION 

Primarily for the purpose of fixing notation,   we shall state 

several formulas to be used in the rest of this paper. 

A.    CORRELATION FUNCTIONS 

Let x(t) be a stationary random process.    Then the auto- 

correlation function cc     (t) of x(t) is defined as 
xx 

T 
C        W     -"     T^l     f x(T)x(T-t)dT xx T—CD   j (2.0 

By ergodicity,  the autocorrelation function cp     (t) depends only upon the 
xx 

ensemble to which x(t) belongs. 

The autopower spectrum   $     (f) of x(t) is the Fourier trans 

form of cp     (t): 
xx 

$     (f)   = [      cp     {t)e 
XX J ^ XX 

-iZnft 
dt (2.2) 

Similarly,  if x(t) and y(t) are stationary random processes, 

the crosscorrelation function   CD     (t) of x and y is         xy 

xy T-00 J _, 
dr (2.3) 

and the crosspower spectrum    $     (f) of x and y is  c 1       Xy 

xy 
(f)    =   f        cp . (t)e-i2T7ft dt 

xy (2.4) 

LWUPJU- IWL   . jimjiuKiiiii^i 
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The crosspower spectrum is easily seen to satisfy 

aiXl + a2X2'y 
(f)   =  a. $      (f) + a, § 

1    Xjy 2   x2y 

and 

i    (f)   =   $     (f) yx xy denotes complex 
conjugation ] 

(2.5) 

B.    LINEAR FILTERS 

The output z(t) of the most general linear filter applied to 

x(t) may be expressed as 

00 

Z(t)     =    (k®x)(t)     =J       k(T)x(t'-)dT 

where k(T) is a function such that 

(     |k(T)|dT   <     » 
•Lea 

-00 (2.6) 

-Cflo 

The Fourier transform K(f) of k(T) is called the transfer 

function   of the filter k. 

C.    CROSSPOWER SPECTRA OF FILTERED TIME FUNCTIONS 

Suppose x(t) and y(t) are stationary random processes,  and 

g(t) and k(t) are linear filters.    Let G(f) and K(f) be the transfer functions 

corresponding to g and k respectively.    Then it is easily verified from 

(2. l)-(2. 6) that 

i   . /&  (f)  = K* (f) $   (f) 
x, k(aS)y w    xy 

and 

*   ~ (f)   =   G(f) $    (f) g®x, yw xyw 

* 
$
g®x.kVf) = G(f)K (f) Vf) 

(2.7) 

II-2 
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In particular, 

^   ^ ^    (f)   =    |G(f)|6 ?     (f) g@ x.g^x w xxw (^•8) 

D.    COHERENCE 

Let x (t) and y{t) be stationary random processes.     The 

coherence C     (f) between x and y is defined as follows: xy 

$     (f) $     (f) 
C     (f)   =   JX £i_ 

xyl ' $     (f) $     (f) 

$     (f) 

xx yy 
$   (f) $   (f) xx      yy 

(2.9) 

It may be shown that C(f) satisfies 0* C(f) < 1 for all real f. 

(2.9) that 

If g and k are linear filters,   it is immediate from (2. 7) and 

Cg©x.  k®y
(f)   =   Cxy(f) (2.10) 

That is,   the coherence between x and y is invariant with respect to 

transformation of x and y by arbitrary linear filters. 

E.    PREDICTION 

Let v(t) and h(t) be stationary random processes (e.g., vertical 

and horizontal components of ambient seismic noise at some location).    We 

wish to find the best frequency filter g(t) to apply to h(t) such that the filtered 

signal h'(t)    s   (g @ h) (t) minimizes the expression 

lim Z I>) - h'(.)]2 dt 

IT-3 
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If we let e{t) a v(c) - h(t),  and G(f)   =   Fourier transform of gft),   our problem 

is equivalent to finding G{f) such that 

/I?ae'f,'d£ (2.11) 

is minimized. 

Using (2. 5),  we ha^e 

i    (f)   =   $    ./      ,.{£) 
ee v-h, v-h (2.12) 

=   $vv^-$vh'(f)-$h'v(f)+$h'h'(f) 

=   $vv(f) " 2Re ($h'v^)) +   $h'h' (f) 

Hence by (2. 7), 

*ee{f)   =   *vv(f) " 2Re (G(f) $hv(f))     +    |G{f)!2  Wf) (2.13) 

The last expression,  the integrand in (2. 11),  is non-negative 

for all f.    Hence to n.inimize (2. 11),  we minimize (2. 13) at each f.    Letting 

G(f)   =   CD   +   i ill 

in (2. 13) and setting 

we find 

8(»ee(£)) a(*ee(£)) 

9cp 

Re 
cp    = 

Wf> 

9t 
=    0 

l\v(£') v       -
Im(»hv<f') 

Wf) 
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1 

Hence the optimum prediction filter is given by 

G(f)    = 
*vh(f) 

(2.14) 

Substitution of (2. 14) into (2. 13) shows that the autopower 

spectrum of the least-mean-square error is 

minimal      $     (f)   =   $     (f) 
ee vv 

\h'f) \v'f' 
fvv<f' »hh(f' 

(i.15) 

=   *vv(f)   [l - C(f)j 

where C(f)   =   coherence between h and v. 

» 

Because of   (Z. 15),  we call ) -C(f) the relative prediction 

error for the frequency f. 

1 
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I SECTION III 

SINGLE MODE RAY LEIGH WAVE FIELD' 

* 

Let O be the origin of an X-Y coordinate system in the plane 

of the earth's surface and let Z be a vertical axis through O, positive down- 

ward.    If Q is any point in the X-Y plane,  the azimuth of Q is the angle 9 

measured  counterclockwise from the positive X axis to the line segmentOQ. 

We suppose P to be the location of a 2-component seismometer 

consisting of a vertical component oriented downward along Z, and a hori- 

zontal component oriented in the positive X-direction. 

A.    FINITE NUMBER OF DISCRETE UNCORRELATED POINT SOURCES 

Suppose we have a finite number N of single-mode Rayleigh 

wave point sources,  located at azimuth 9  ,   9  , 
1 £ 

. ,   9xt.    Let I   (t) be 
N n 

the inline horizontal motion at P due to the nt^  source; X (t) is positive in 
n 

the direction -9   ,  the direction of propagation.    Let v  (t) be the vertical 
n th ' n 

motion at P due to the n     source. 

We make the following basic assumptions: 

(1) For each n,   X  (t) is a stationary random process. n 

(2) The autocorrelation functions cp.    ,    (t) are all the 
n   n 

same except for multiplicative constants. 

(Ü)   All of the crosscorrelation functions cp 

are zero. 
-00 

(4)   There exists a function k(t) with /       |k(t)|dt < 
•A-00 

such that v    =   k®X   for all n,  i.e., 
n n 

X     X   , m ^ n, m   n 

v  (t)   =   f      k(s)  X    (t-s)di 
n J«, n 

In this report, the term "Rayleigh wave" is used to refer to all types 
of elliptically polarized surface waves and is meant to encompass all 
surface waves except Love (SH) waves. 

III-l 
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r 
Let us define I 

hn(t)   =   - coSenXn(t) (3.1) j 

N t 
h(t)    =£   hnW (3-2) 

n=l 

v(t)   =£    v  (t) 

I 
Clearly h   is the contribution to the output of our horizontal 

seismom-tcr due to t  e nth source,  and h(t) and v(t) are the outputs of the i 

hciizontal and vertical seismometers,   respectively. 

We proceed to calculate the coherence | 

C   =       vh 

vv hh 

between v and h. 

Our assumption (3) is equivalent to another assumption: 

{3a) $x      x   {£)   =   0,    m ^ n 
m   n 

Our assumption (2) is equivalent to another assumption: 

III-2 

1. 
I. 
I 

i 
(2a)     There exists an autopower spectrum I   ,  and non-negative 

N f constants p(9 ), n = 1,  2,  . .. , N.  with £    p(6 )   =   1,  suchthat L 

I 
n=l 

$)   X    (£)   ^   P^J $(f)' n= L  2.  ....  N (3.3) 
n n 

At this point,  because of a limiting process to be carried out *• 

later,  it is desirable to introduce one additional assumption: a* 

r00 Ü 
J  m<U   =   1 (3.4) 

%/■ 

<' ;    %3 
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We have 
(3. 5) 

=    $ 
h h 'cos Q   >.  ,   cos 

n n n n n n 

2 2 
*   .      =   cos   C)    $ =   cos   9 p(9 ) $ 
Ö   A n    X   >. nr     n 

n   n 

Also,  by assumption (4) and formula (3. 1) we get 

cos 9   v k@h 
n   n n (3.6) 

Hence by (2. 7), 

- cos 9    $ =   K $,   .       =   K cos   9 p (9 ) * n    v h h h «r \  .... 
n  n n n 

n       n (3.7) 

where 

K(f)   = j       k(t)e -i2nft 
dt 

is the Fourier trar sform of k(t).      That is, 

i    .      =   - Kcos 9 p(9 ) $ 
v h nr l  n 

n n 
(3.8) 

From assumption (4) and (2.7) we get 

t =   #. ^,       . ^,       =    |K|    $,   ,      =    |K|   p(e )$ v v k© X ,  k© X 
n n n n X  X 

n n 
n (3.9) 

Now, i   om (3. 5) and assumption   (3a) we get 

2 
hh =?-i V =feC08 ^J) n=l        n n     \n=l / 

i (3.10) 

III-3 
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and 

Similarly from '\ 8) and (3. 9) we get 

vh 
=(li cos V(Bn')Ki 

C   = 

vv      \ 

N              \        2 
£ P(e )   K    $ =   K 
n=I        n / 

?- 
$ 

Therefore 

^2 

N 
" S,    cos G p(e ) K $ n=l             nr    n 

2 

hh  vv N 
2    cos   9   p(6 ) $ 
n=l               n ^    n 

i. 

K  2$ 

(3.11) 

(3.12) 

or,  finally, 

C     = 
I 2-,   cos    9 p(9 )/ 
\n=l nrx  n'/ 

^ 2 2-  cos   e p(e ) 
n=l nKl n' 

(3.13) 

We call p(9 ) the (discrete) azimuthal poy.-jr distribution function. 

Thus (3. 13) gives the coherence C between vertical and horizontal for N discrete 

single-mode Rayleigh sources with azimuthal power distribution function p(9  ). 
n 

B.    CONTINUOUS SOURCE 

It is of interest to derive a formula,   similar to (3. 13),  giving 

the cohen nee for the case of uncorrelated single-mode Rayleigh noise 

arriving from the continuous range of azimuth -rr <   9  <  rr ,  with a continuous 

azimuthal power density function P(9). 

The meaning of the underlined phrase requires some clarification. 

Throughout this study, noise arriving from a continuous range of azimuths will 

be regarded as a limiting case of the problem we have already considered 

involving a finite number N of uncorre?ated sources,  where N -• »   and the 

III-4 
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azimuthal separation between sources -«0.    We will take the limit in such 

a way that the total vertical power remains constant. 

Thus,   suppose P(9) is a non-negative,  Riemann-integrable 

function defined on   -TT ,  rrj such that 

j   p(9)de = i 
-TT 

and suppose $ (f) is an autopower spectrum such that 

(3. 14) 

f m df   =   1 

We call P(6) a    continuous azimuthal power distribution 

function.    Intuitively,  we will think of P(9) as defining the distribution of 

source power with regard to azimuth,  for a single-nnode Rayleigh source 

distributed over the whole range of p.ssible azimuths. 

N 
9    <   9   < 

1 2 

Identifying the endpoints of the inteval    -rr, rrj,    let -TT    = 

<   9 <   9        =   TT    and define 
N-l N 

/ 

3n+l 
P(9)d9,   n = 1,  2 N-l 

Jn 
p(9n)   M 

r9i / P(9) dB,    n   =   N 
0 

N 
Then ^    p(9 )    =    1,  and if we have uncorrelated Rayleigh 

n=l n 

sources at the azimuths 9, ••••.-   "^»j with inline horizontal autopower spectra 

p(9 ) $ P^M^ *'  t^ien t^16 coherence will be,  by (3. 13), 
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r . 9 
n 

IS —.    cos 9   p(^ ) 
n=l nr    n 
N 2 

E cos  e ^(9 ) 
n=l n       n 

(3.16) 

N      r^n+l 
E,  Je       cos 9 p(e) de 
n=l        n n 

E     (   n+1   cos2 8   P(e)d9 
'S n 

n=l       n 

If we let N increase in such a way that      min        |6      , - 9 
i ^    ^TVT        n+ ^       n 

1 ^ n^N 
-♦ 0,  then it is easily shown that 

Cn ft       -" C 

1 N 

N       r 

z. J. 
9 n+1 

__   ,e      cos ep(e) de 
n=l        n 

N      r9n+1 

S.     L co 
n=l 

s    9P(e)c:a 
n 

I        cos 9 P 
•-TT 

(9) dB 

r cos   ep(9) de 

In this sense we say that the formula 

I2 

cos ep(9) de 

/     cos   6p(e) de 

gives the coherence between vertical and horizontal for a two-component 

seismometer in a single-mode Rayleigh field witn continuous azimuthal 

power distribution function P(9). 

Ill-6 

(3.17) 
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1 
C.    CALCULATION OF COHERENCE FOR CERTAIN DISTRIBUTIONS P(^) 

1.    C = 1 

Having obtained formulas (3. 13) and (3. 17),  we shall now use 

these formulas to calculate coherence for several examples of a?imuthal 

power distribution functions.    The coherence C between v and h ranges 

irom 0 (no prediction capability) to 1 (perfect predictability).    A single 

discrete source will yield C=l, provided its azimuth 0 is not equal to 
TT 

±— .    More generally,   (see formula (3. 13)), C= 1 whenever only two sources 

are present and their azimuths satisfy 9    = -9  ,   9    ^   ± "T •    (Power may be 

distributed arbitrarily between these two sources; e. g. ,  one source may 

have zero power.)   It may be shown that this is the only situation for 

which C = 1. 

2.    C = 0 

The other extreme,  C=0,  can occur in many ways.    The most 

important cases for which C= 0 are the following: 

(1) Symmetry About —- 

Formula (3. 17) shows that if P( 7   -   8)  s   P (-  +    9) 

for all 9 , then C = 0. 

(2) Periodicity 

If there exists an integer 5^2 such that P(9 + ~) = P(9) 

for all 9,  then C = 0.    This follows from (3. 7) and the fact that 

S 
E 
k=l 

/2TTk ,\ n 

for all positive integers S ^  2 and real numbers 6.    An important example 

which satisfies both (1) and (2) is the isotropic distribution; 

P(9)   = I 

III-7 
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However,   it is possible for the coherence to be quite large, 

even for certain ra^er widely distributed sources,  as we shall illustrate 

with the three samples which follow.   (See Figure III-l.) 

3.    Discrete Point Sources of Equal Power Located at Azimuths |i-p and Mt P 

Consider the discrete c.zimuthal power distribution function 

p(|a-p) = 1/2,  p(ti-!-p) = 1/2.    For this case,  the coherence computed by 

(3. 13) is 
,2 

H, P 

|— cos (|i-P) + ~   cos (M+P) 

1 2 ,        v       1 2# — cos    {|J-p)+—  cos   (ki+P) 

2 2 
2 cos    M cos    p 

1  +  cos 2 jj cos2p 
(3. 18) 

A tabulation of the prediction error 1-C for several values of \i and p u, p 
is given in Table III-l. 

4.    Uniform Distribution From \i-p to [X+  p 

Let 

P(e) = 2p 
,p-psesu+ p 

0,  otherwise 

This represents a uniform distribution of power coming from 

a wedge of azimuths with width 2p  and center angle \i.    By (3. 17) the 

coherence is 

^.P 

i rM+p 
— cos 6 dB . 2p -V-p  

(3.19) 

|sin(m-p)  - sin(M- p)| 

i     ft^+P 2 
2p  I 

cos    9de 2p   p + 
sin(2|i + 2p) - sin(2M - 2p) 

M-P 

A        2 .2 4 cos    |j sin    p 

o(2p + cos  Z\x sin 2p) 

A tabulation of 1-C for certain values of u and p is eiven 
M, P B 

in Table III-2. 

Ill-8 

—r ■■:f£   --f' ■ -Ssrfi; s^sggmm 



6-III 

PREDICTION ERROR 
o o 

(TO 
d 

? hd rr ►1 
n> fD 
3 a !-*• v
rl n 
^ 
•5 *» 
n» 3 
►1 

h H-' 
^ «) •i 

C 
3 

O 

!-• l-S 
h* 

0 
J H 
n 
3 X >—• o 
^ *i 

i-»' 

0 N 
»-■• Ü 
tn 3 rt- rt 
n fr !-•• H- 
cr 
d UJ 
S- 3 
n a 
D. 

< 
W 0) 
n> 4 
r+ rf 

ft n 
(1> 

3 (—1 

> 3 
Cfi 

N rt 

3 
1 
3 

rt 3 
;r n» 

3 
T: rt 

I 
fu 

M r+ 

VI 

3 
3 

P 
0) 

r + o 
o o (U 
rr 
►-•• 

0 
3 

^^^^^^pr r^ ~*tm 'm 



III-IO 

Table III-l 

VALUES OF 1-C FOR TWO DISCRETE SOURCES OF EQb^L POWER 
LOCATED AT AZIMUTHS,  \i -  p   AND   M +  p.    (u.p IN DEGREES) 

>^L 0 10 20 30 60 90 

5;175 0.000 0.000 0.S01 0.003 0.022 1.000 

10;170 0.000 0.001 0.004 0.010 0.085 1.000 

15;165 0.000 0.002 0.009 0.023 0. 177 1.000 

20;160 0.000 0.004 0.017 0.042 0.284 1   O'jO 

25; 155 0.000 0.007 0.028 0.068 0. ^95 1.000 

30:150 0.000 0.010 0.042 0. '00 0. 500 i.000 

35;145 0. 000 0.015 0.061 0. 140 0.595 1.000 

40 ;140 0. 000 0.021 0.085 0.190 0.678 1.000 

45;135 0.000 0.030 0. 117 0.250 0.750 1.000 

50;130 0.000 0.042 0. 158 0.321 0.810 1.000 

55;125 0.000 0.060 0.215 0.405 0.860 1.000 

60; 120 0.000 0.085 0.284 0.500 0.900 1.000 

65;115 0.000 0.125 0.379 0.605 0.932 .1.000 

70;110 0.000 0. 190 0. 500 0.716 0.958 1.000 

75;105 0.000 0, 302 0.649 0.823 0.977 l.CCO 

80;100 0.000 0.500 0.810 0.914 0.990 1.000 

85;95 0.000 0. 80L 0.945 0.977 0.997 1.000 

90 1,000 1.000 1.000 1.000 1.000 

■'M-Sg MB». "ms-w1 ,y wimip   m^» 



Table III -2 

VALUES OF I-C FOR UNIFORM DISTRIBUTION 
FROM M-P   TO  ia+p       (li,P   IN DEGREES) 

0 10 20 30 60 
I 

1   90 

5 0.000 0.000 0.000 0.001 0.008 1.000 

15 0.000 0. 001 0.003 0.008 0.065 1.000 

25 0.001 0.003 0.009 0.022 0. 164 1.000 

35 0.003 0.007 0.020 0.045 0. 284 1.000 

45 0.009 0.016 0.038 0.078 0.405 1.000 

55 0.022 0.033 0.065 0. 122 0. 518 1.000 

65 0.046 0.060 0. 104 0. 181 0. 616 I. 000 

75 0.086 0. 105 0. 161 0.254 0.699 1.000 

85 0. 148 0.171 0.238 0.343 0.768 1.000 

95 0.238 0.264 0.336 0.444 0.824 1.000 

105 0.357 0. 382 0.452 0.553 0. 870 1.000 

115 0.496 0.518 0. 578 0.662 0, 907 1.000 

125 0.641 0.657 0.702 0.763 0.936 1.000 

135 0.771 0.782 0.810 0.849 0.959 1.000 

145 0.874 0.879 0.894 0.915 0.976 1.000 

155 0.943 0.945 0.952 0.961 0. 989 1.000 

165 0.982 0.983 0.985 0.987 0.996 1.000 

175 0.998 0.998 0.999 0.999 1.000 1.000 

180 1.000 1.000 1.000 1.000 1.000 1.000 
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and 

5.    Cos    Distribution 

Consider the continuous azimuthal po^ver density function 

(^  (6- M)).   M - P ^  9  s U+   P 
P(ö)   = 

1 2 
—   cos 
p 

V 0,  otherwise 

TT 
Using formula (3. 17),  we find   for P ^ — ,   P ^ n 

2    \2 
2n       \ 2        .  2 

cos    |i sin    p ( 2       2 
\ri    -  p 

^.P 

2P P   + 
TT 

^2   o  2 2TT  -3p 
cos 2|i sin 2p 

(3.20) 

n 

n." 

(M 
2 

cos    M 

1 + 2 cos   |i 
(3.21) 

2 
COS      |i 

A tabulation of 1-C for several values of |-i, p is given 

in Table III-3. 
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Table III-3 

VALUES OF 1-C FOR COS2 DISTRIBUTION 
(U, P IN DEGREES) 

>v  Li 

p X^ 0 10 20 30 60 90 

5 

15 

25 

35 

45 

55 

65 

75 

85 

0.000 

0.000 

0.000 

0.001 

0.002 

0.005 

0.010 

0.019 

0.031 

0.000 

0.000 

0.001 

0.002 

0.005 

0.009 

0.016 

0.026 

0.040 

0.000 

0.001 

0.004 

0.0G7 

0.013 

0.021 

0.0 32 

0.048 

0.068 

0.000 

0.003 

0.008 

0.017 

0.029 

0.044 

0.^64 

0.089 

0. 118 

0. 003 

0.026 

0.070 

0. 129 

0. 199 

0.273 

0. 348 

0.420 

0.488 

1.000 

1.000 

1.000 

1.000 

l.OuO 

1.000 

1.000 

1.000 

1.000 

90 0.039 0.049 0.080 0. 135 0. 520 1.000 

95 

105 

115 

125 

135 

145 

155 

165 

175 

180 

0.049 

0.073 

0. 106 

0. 146 

0. 196 

0.253 

0.319 

0. 389 

0.463 

0. 500 

0.060 

0.086 

0. 120 

0. 162 

0.213 

0.271 

0. 336 

0.406 

0.479 

0.515 

0.094 

0. 126 

0. 165 

0.211 

0.265 

0. 324 

0. 389 

0.456 

0. 525 

0.558 

0. 154 

0. 195 

0.241 

0.293 

0. 349 

0.409 

0.471 

0.534 

0. 595 

0.625 

0.550 

0.607 

0.657 

0.703 

0. 743 

0.779 

0.811 

0.839 

0.864 

0.875 

1.000 

1.000 

1.000 

1. 000 

1.000 

1.000 

1.000 

1.000 

1.000 

1.0.^0 
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SECTION IV 

EFFECT OF ADDITIONAL RANDOM UNCORRELATED NOISE 

The coherence between vertical and horizontal for the case 

we 1-avfc considered in Section III will be reduced if the se'smometer outputs 

v and/or h contain an additional component of random,  uncorrelated noise; 

e.g.,   amplifier noise. 

Consider the following quite general problem: we are given 

two stationary random processes v and h,   with coherence C, ;f v    = v +   z, 

h    = h +  x,   where z and x are stationary random processes uncorrelated 

to v,   h,  and uncorrelated to each other,  then what is the coherence C 

between v    and h   ? 

We have 

v  h 
(4.1) 

11 vv zz 
V   V 

Therefore, 

J   1 hh xx 
h  h 

KJ 
y vv zzl    \ hh xxJ 

(■•«(■• 
XX 

$ 
hh> 

(4.2) 

C 

We see from equation (4. 2) that the effect on coherence depends upon the 

ratios $     /$       and   $      /$. , .     In the case that v and h are the vertical 
zz/    vv xx /   hh 

or horizontal components of displacement due to a single-mode Rayleigh 

field with some azimuthal power distribution, P(6),  and if we conceive 

that  i     ,   i     ,  and i       remain fixed as we var « P(6),  we see that the 
zz VV XX 

IV-1 
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greatest reduction in coherence results when P(6) is strongly concentrated 

near ±rr ,  for then,   by equation (3. 10),   i      will be very small.    For example, 
c. hh 

if $       <   $     ,  then C    "    1/2 C,  by (4. 2). 
hh xx 

true that 

For any real numbers a, 0  with O^a   21,0^3^1,  it is 

(m) (TTS) ^   1 - a   -   0 

Therefore,  if 

zz vv        xx hh 

then 

1    - zz 

vv 

XX 

hh 

(4.3) 

(4.4) 

Formula (4. 3) is a reasonable assumption if i      and $      are interpreted as 
zz 

TT 
XX 

amplifier noise,  and P(9)  is not concentrated near ±—.      Thus, for example, 

(4. 3) phows that if on each channel the power of amplifier  aoise is less than 

1 percent of the power of seismic noise,  then the coherence is reduced by 

less than 2 percent. 

We may conclude that for the case of single-mode Rayleigh 

waves with an azimuthal power density P(!5),    the coherence between v and 

h will not be seriously affected by the addition of a realistic amount of 
TT 

amplifier noise on both channels,  unless P(9) is concentrated near ±— . 

i     « 
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SECTION V 

LOVE WAVES 

I 

I 

I 
I 

I 
I 
1 

We shall discuss in this sectijn the limitation upon prediction 

capability imposed by the addition of Love (SH) waves on the horizontal 

channel.    It will always be assumed that the Love waves are uncorrelated 

with the Rayleigh waves. 

A.    GENERAL FORMULA FOR EFFECT OF LOVE WAVES ON COHERENCE 

Suppose we have N sources,  at azimuths 9 6   ,   each 

source generating Rayleigh noise,   with components v   ,   X   ,   h    as in Section 
th n       n      n 

III.    Suppose also that the n      source generates Love wave noise with motion 

j    in the direction Q      +    n/2. 
n 

we assume 

n 

and 

and 

(1) 

(2) 

In addition to the assumptions of Section III,  parf.graph A, 

For each n,   j   (t) is a stationary random process 

There exists an autopower spectrum Q(f) and constants 
N 

q(9  ) such that 2     q(9  )   =    1   and   $.   .    =   q(e  ) Q, 
n n=l n 

n n 
n 

(3)       The crosspower spectra $. = 0,  m ^ n     and 
JmJn 

The crosspower spectra $.    ,    =   0 for all m,  n. 
m n 

Let us define 

w (t)   =   sin 9   j    (t) 
- n Jn n 

w(t) 
N 

= E * (t) 
n=l 

n 

(5.1) 

(5.2) 

V-l 
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Clearly w    is the contribution to the output of the horizontal 7     n , r 

seismometer due to Love waves from the n      source,  and w(t) is the total 

Love component on the horizontal. 

Let L(f) be defined by the relationship 

n (f)   =   L(f)  $ (f) (5.3) 

Then (cf.   3. 10) we find 

N 2 
$ =y     sin     6    0(6   ) Q 
ww       f-, n        n n=l 

(5.4) 

N 
= yi      sin    6    q (9 ) •  L  •   $ 

n=l n n 

Thus,   if C       =   coherence between v  ind h+w, 

KJ 
$ ,  + §     I $ 
hh ww      vv 

N 
E,  cos 9   p{9 ) 
n=l n ^x  n 

IK |2 f2 

(5.5) 

N N 2 
2   cos   9   p(9 ) $  +   L E   sin   9   q(9 ) $ 

n       n „_i n       n n=l n=l 

.2 
K     $ 

by Equations (3, 10)  - (3. 12),   (5.4).      Hence 
N ,2 

E,   cos 9 p(9 ) 
n=l nr    n 

V 2 N 

22    cos    6^ p(9^)   +    LS      sin    9   q(9 ) 
n=l n = l n        n n       n 

We call q(9  ) the (discrete) azimuthal power distribution function 

for the Love waves.    As before,  we can obtain a formula similar to (5. 6) 

giving the coherence for a continuous azimuthal power distribution Q(6) 

for the Love waves: 

V-2 
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T 
I 
I 
a 
i 

TT 

J^   cos  3 P(6)de 

j    cos    ep(e)d9   +   L'J^   sin    eQ(ü)de 

Note that (5.6) and (5.7) reduce to (3. 13) and (3. 17) respectively, 

on setting L =  0. 

B.    ISOTROPIC LOVE WAVES 

It is best to regard the case of Isotropie Love waves 

(Q(9) = —j as a special case of the situation discussed in Section IV.    That is, 

the Love wave energy on the horizontal is simply uncorrelated additive noise 

on the predicting channel,   and its effect upon coherence is mathematically 

indistinguishable from that of,   say,   amplifier noise. 

(5.7) 

(4. 2) that 

Thus,  if C is the coherence between v and h,   we have by 

hh 

hh ww 
(5.8) 

If f        is large,  there is a substantial reduction in coherence, 
ww 

For,   recall (cf.   3. 10) that 

hh 

TT 

j    cos2ep(e) d9 
-TT 

f     S       $ 

Also,  by (5.4) 

Therefore 

ww r 
-TT 

sin    o   *  r-     do 
2TT 

hh 
f 
hh +  $ 

ww 

L  $ 

$  +   —   L* 
2 +  L 
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Hence, , 
C       s   l^j-T-) * ^ lisotropic Love waves (^.9) 

Formula (5. 9) implies,  for example,  that if L = 2,  then the 

coherence C    is never greater than 1/Z. 

C.    LOVE WAVES WITH SAME DISTRIBUTION AS THE RAYLEiGH WAVES 

If the Love wave field is non-isotropic,  formula 5. 8 still 

holds.    But in this case it may be misleading to regard the Love waves 

simply as additive uncorrelated noise,   because $        depends upon the 
ww 

orientation of our horizontal seismometer.    That is,   by pointing our 

horizontal seismometer  in the proper direction,   it may be possible to 

make i       quite small, 
ww 

To illustrate this phenomenon,   consider the situation in 

which the Love waves have the same azimuthal power distribution as the 

Rayleigh waves; i. e. , 

Q(9) = p(e) 

Then (5.7) becomes 
r    n 

_      UTT   cos 9 P(9) d9_ 
(5.11) 

11 ii , 

j      :os29P(9)d9+   LJ    sin''9p(6)de 

If in the distributions P(9) considered in Section III,  paragraph C, 

we specify the values of p  and L,  then the coherence CT   calculated by (5. 11) is 

maximized for |J =   0.      For p. =   0,   we get surprisingly hign coherence,  even 

for L as large as 10 (See Tables V-l,   V-2).    For example,  for a      iform 

dist   .bution from -25° to +25° and L   =   10,  the prediction error is onl/ 

0. 395 (Table V-2). 
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Table V-l 

VALUES OF 1 -C FOR DISCRETE SOURCES AT AZIMUTHS ± P 
WITH INLINE LOVE POWER - L x INLINE RAYLEIGH POWER 

(Df-qnis) L « 0 L = 0. 1 L = 1.0 L r 10. 0 

;
), 175 0,000 0.001 0.00« 0.07 1 

1 s, u,s 0.000 0. 007 0. 067 0. 418 

i**,  1 ss 0. 000 O.Oc." 0. 179 0. 685 

»■i; 145 0.000 0.047 0. 329 0.8 31 

4t); 1 M 0. 000 0.091 0. 500 0. 909 

SS; I^S 0.000 0. 169 0.671 0. 95 3 

65; 115 0. 000 0. 315 0.821 0. 979 

75; 105 0.000 0. 582 0.933 0.993 

H5: r>5 0.000 0. 929 0.992 0. 999 

Table V-2 

VALUES OF I-C FOR UNIFORM RAYLEIGH DISTRIBUTION FROM -p TO + p 
WITH INLINE LOVE POWER   =   L   x   INLINE RAYLEIGH POWER 

fi (Dcgroos) L = 0 L = 0. 1 L = 1.0 L = 10.0 

5 0.000 0.000 0, 00 : 0.0^.5 

15 0.000 0.002 0.023 0. 187 

25 0.001 0.007 .. übt. 0. 395 

35 0.003 0.016 0. 118 0. 568 

45 0.009 0.0 30 0. 189 0.692 

55 0.022 0.054 0. 271 0.779 

65 0.046 0.091 0.361 0.840 

75 0.086 0. 143 0.455 0.882 

85 0. 148 0.217 0. 549 0. 914 

95 0.238 0.-14 0.639 0.937 

105 0. 357 0.431 0.722 0.955 

115 0.496 0.5cl 0.796 0. 968 

125 0.641 0.689 0.859 0. 978 

135 0.77' 0.802 0.910 0. 986 

145 0.874 0.890 0. 949 0. 99i 

155 0.943 0.950 0.976 0.996 

165 0. 982 0.984 0.992 0.999 

175 0.998 0. 998 0.999 1.000 

180 1.000 1.000 1.000 1.000 
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SECTION VI 

EFFECT OF GAIN FLUCTUATION 

In the preceding sections we have assumed implicitly that 

the amplitude gains of our two seismometers are constant functions of time. 

In practice,   however,  these gains vary slcwly with time,  and are never 

known precisely.    This results in a lower observable coherence between 

the two channels than is indicated by our previous equations.    Fortunately, 

this effect is not serious if the gain fluctuations are reasonably small and 

vvell-oehaved. 

For, let r = r(t) a^H a - «?(t) be the gains of the veit->"l 

and horizontal seismometers respectively. We assvmc that i and s are 

non-negative variables satisfying: 

(1) r(t) and s(t) arc statistically independent stationary 

random processes,  with first order probability 

functions Q    and Q  ,  respectively 
r s 

(2) During any short interval of time during which 

we continuously record data for use in an experi- 

mental determination of cp     ,  cp , , or cp, , , the 
vv      vh hh 

variations in the gains are so slight that we may 

consider the gains to be constant throughout 

'J zt interval 

With these assumptions,   suppose now that a certain noise 

situation persists for many days; that is,  the actual correlations cp     , 
vv 

cp  , ,  and 9, , ,  and the azimuthal power distribution function P(9) remain 
vh hh r 

unchanged over an extended period of time.    During this period let us 

repeatedly use our two seismometers to measure cp     ,  cp  , ,  and cp, , .    The r ' vv       vh hh 
gains r and s are varying during this period,  but in accordance with 

assumption (2),  we make the approximaHon that r and s remain constant 

VI-1 
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throughout each interval of measurement.    Then,  the observed correlations 

determined by measurement beginning at time t are 

2 2 
r(t)    cpvv,   r(t) s(t) cpvh,  and s(t)    cphh 

Taking the averages of these correlations for many different 

values of t,  we obtain the average observed correlations  <b     .  A     .  and 
 ■—B——■   xvv    rvh 

<b,. .       Thus 
hh 

<j>        =   r(t)       rp xvv vv 

«vh    ^    -" "M    ^Vh 

*hh = s(t) ^hh 

(6.1) 

We define C   ,  the observed coherence,  by 

l»*vhl
2     {^üf\*Jz 

C       =  -y  
*vv*hh r(t)2    s(t)2 $vv$hh 

(6.2) 

Therefore, 

_   \r(t) s(t)) c 

T —r 
where C is the  coherence between v and h that would be observed by 

seismometers having no gain fluctuation. 

(6.3) 

The mathematical significance of C     lies in the fact that 
,"   - 1 -C    is the relative predictior« error corresponding to the optimum Wiener 

prediction filter transfer function G(f) to be applied to h for predicting v in 

the variable gain situation. 
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In greater detail: let g(t) be a convolution operator,  G(f) = 

Fourier transform of g,  and define e = v - (g©h).    Let <})      be the average 
ee 

observed autocorrelation function of e (cf.   the definition of i     , 4> ,   and 6 . ), 
vv      vh hh 

and let P  (f) be the Fourier transform of 4> 
e ee 

Take G(f) -     .r*,  where A and B are the Fourier transforms of 
B(l) 

<})      and <|)      respectively; it may be shown that this choice of the filter 

transfer function G is optimal in the sense that it minimizes the average 

error power a, 
f      P  (f)df 

Furthermore,  we find that for this choice of G, 

00 

/     P   (f)df   =   D(f) fl-C^f) 
— GO G 

I 
I 

where D(f) is the Fourier transform of <j)     . 
vv 

Now,  by ergodicity of the time series r(t) and s(t),  (6. 3). 

may be written 
/•CO    ,00 ■% l 

.„      j j    Or(x)Qsly)dxdy 

]    Qr(x)6dx [   Qs(y)   dy 
•    C (6.4) 

or,  since r(t) and s(t) are statistically independent, 

2 r .aD yZ 
f      Q   (x)dx]     ff    Q  (y)dy 

C"  = 

/     Qr (x)2 dx •  /"    Q  (y)2 dy 

'   C (6.5) 

^ + CT
r

2/ V2 + a2 

where |i     and \i    are the means of the distributions Q    and Q    respectively, 

and o^   and a^   are the corresponding variances. 
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1c is clear from formula (6.5) that the effect on coherence 
2 2 

due to gain fluctuation is small if the variances o     and o    are small corn- 
2 2 r s 

pared to |i     and \i .    To illustrate the quantitative effect of gain fluctuation 

on 
r s * ° 

coherence,  we consiuer two examples of gain probability distributions. 

Examole 1.    Uniform Distribution from 0 to R 

Let R b-» an arbitrarily large positive number and let 

T 

Q  (x)   =   Q (x) 
r s 

1 
R,  0 ^ x ^ R 

0,  otherwise 

Ths^f        compute from (6,5) that 

C    ' f6  C 

Thus in the rather extreme case that the gains are evenly distributed 

between 0 and some large number,  the coherence is reduced by less than 

a factor of 2. 

Example 2.    Log (gain) Normally Distributed 

Suppose that the random variables log r and log s both are 
2 

norma.- v distributed with mean 0 and variance o   .    Then 

|i     «   U /% Qr,x, dx  . / Je'^ exp (-£) Jdy 

2 
s   e   • 

Also, 

2 2 
M   + a 

r r 
2 2 

la    +   a 
5 s 

2a       i       f 
fc e   * -^ ic exp 

(^ 
dy   =   e 

2a 

I 

I 
I 
I 
1 

,   f"     /. (Y.^-f\ rt    e£i 2.,        I 
vtf L exp \  2a2 ; ^ =e— '/2       • 

i 

1 
1 
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Therefore, by (6, 5) 

C    s  r—     •     r- 
2a' 2a 

C   a   e"2a     C (6.6) 

2 -2a 
In Table VI-1,  |i   ,  a    ,  and e are tabulated for sevcial 

r       r 
values of a   , 

We see from Table VI-1 that in Example 2 (which is probably 

a more realistic gain distribution than Example 1) a severe loss in coherence 
2 

results  if a     is allowed to be as large as,  say,  1.   It should be possible, 

however, through a program of peridical calibration, to insure that the 

seismometer gain fluctuations remain within acceptable limits.    This will 

be necessary if one is to implement a processor in which the prediction 

filter applied to h for predicting v remains unchanged for an extended 

period of time. 

Table VI-1 

EFFECT OF GAIN FLUCTUATION ON COHERENCE FOR log fgain) 

NORMALLY DISTRIBUTED, MEAN = 0,  VARIANCE   =   a2 

a2 

^ 
a2 

r 
-2a2 

e 

0 1 0 1 

0.01 1.0051 0.0101 0.9802 

Ü. 1 1.0513 0.1162 0.8187 

0.3 1.1618 0.4722 0. 5488 

0.5 1.2840 1.0696 0.3679 

1.0 1.6487 4. 6708 0.1353 
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SECTION VII 

MULTIMODE NOISE 

In Sections III through VI we have discussed the coherence 

between vertical and horizont?1. seismometers at point location in a single- 

mode noise field,  with the possible addition of Lrve waves on the horizontal. 

For the same two-channel system,  we shall now obtain formulas for coherence 

between v and h in the more general case that not one,  but several modes of 

noise are present. 

As in Section III,  assume we have a two-component seis- 

mometer located at the origin O of an X-Y coordinate system in the plane. 

Let 8      9 6      be azimuths; for each n = 1,  2,  ,  ,  ., N, we have a 

noise generator at azimuth 9  . 

th 
Let v   and >.     be the respective outputs,due to noise from n n r r 

the n     source,  of a vertical seismometer at P and ctn inline horizontal 

seismometer at P. 

We assume that 

M 
m 

n 
= 2    v- .   X 

m=0 n it 

M 

m=0 

m 
n (7.1) 

where v      and X      are respectively the vertical and inline horizontal n n ' 
components of m**1 noise mode from the n     source, m = 0,  1,  2,  ,  .  .  , M. 

Also, we assume that the n     source generates Love (SH) 

noise with motion j    in the direction 6     +  -r . Jn n 2 

We make the following basic assumptions about v m 
n 

^m 
n 

and j  : Jn 

[Notation:    numerical subscripts refer to the source; superscripts refer 

to the mode.] 
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VII-2 

(1) X       i.nd j    are stationary random processes, for all n,  m. 

(2) For each m = 0,   1,  2,  .  .  .,  M, there exists an   autopower 

spectrum $    ,  and constants p    (9 ),  such thct 
n 

N     m 

EP  (en) = i 
n=:l 

and 

Vx-     =pm(6n'*m-    n=1-2 N 

n     n 

There exists an   autopower spectrum  Q   and constants 

q(9 )   such that 
n 

N 

n=l 

and 

$i  i     =   q(en)  fi.   n= !.  2.  •  •   •• N 
n n 

(3) X      and X       are uncorrelated unless n ■= v   and m = u. 
m \x 

X      and j     are uncorrelated for all n,  m,  u . 
m |Ji 

(4) For each m,  there exists a function k    (t) with 

<       00 

such that 

vm   =    km  ®  Xm      for all n = 1,  2,  .... N 
n n 

'-^^m* -^    ~^-i^-imS/MB™'    ^t^"'    s-     -f--±. ._      -     ,'_'        ::^^~ S i-re  ~        -'^1'^    '   ^^        _   , iV       ,..>; **\ 4% 



Having made these assumptions,   let us define 

I 

I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 

h  (t)   =   -cos 6    ?    (t) 
n n    n 

w (t) =   sin 5   j  (t) 
n' nJn 

N 
h(t)    =V     h   (t) 

^1     n 

N w(t) =£   wn(t) 
n=l 

N 
v(t)   = £     v  (t) 

(7.2) 

n=l 
n 

Clearly h      +    w     is the contribution to the output of our 
n n r 

th 
horizontal seismometer due to the n     source (w   is the Love wave contribution); 

h{t) + w(t) and v(t) are respectively,  the total horizontal and vertical seismo- 

grams, 

We proceed to find the c^. orence 

C   a      l^v, h + w 

vv h+w, hf w 

between v and h + w. 

As before, let K     be the Fourier transform of k    , m = 0, 

1,2,  .  .  ., M, and let L(f) be defined by 

M 
n(f) =   L(f)2    *   (f) 

m=0 

|L(f) is thus a measure of the ratio of inline Love power to total inline 

SV+P power  .| 

(7.4) 
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Omitting the calculations,  which are but a slight generalization ol 

the corresponding calculations in Sections III and V,  we find 

and 

£.t *   u.    si;   2:    cos e pm(e )Km$m 

v,h+w      fiil g^o nr       n 

w m=0 
Km|    $m 

*u+      v,+       = £      E       cos2 6   pm (9 ) $m 

h+w. h+w      ^   £LQ n1- n 

(7.5) 

N 2 
+ E  sin e

n ^(9)0 
n       n 

One can now substitute (7. 5) into (7, 3) and obtain the general 

multimode coherence.     However,  we shall now restrict ourselves to a simpler 

case; namely,  we make one additional assumption: 

(5)       All of the azimuthal power distribution functions are 
,.01 m 

equal,  1. e., p    = p    = .  .  .  = p     = q. 

Letting p be the azimuthal power distribution function common 

to all modes, in accordance with assumption (5), we find from (7, 3), (7,4) and 

(7,5) that the coherence is: 

C     = 
(2,cos 9 p(e ) ) 
n=l n      n  / 

n=:l n     n n=I n      n 

(7.6) 

1^ 
Im^O 

,.m .ml 

N £        2 & 
Z,   cos   9 p(9 ) + L £ sin   9 p(e ) £ 

M 

m=0 m^O 
K 

m .m 
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As before,  we can write a similar formula for the case of a 

11 
II 
1 
I 
I 
1 
I 
I 

I 

1 
II 
[ 
I 

continuous azimuthal power distribution function P(^); 

C   = 

r ^ 
[L 

.2 

cos ep{9) de 
M 

m=0 

(7.7) 

J cos2ep(9)de^Lj   sin ep(e)de 
-TT -TT 

M M 

m=0 m=0 
K 

n'i .m 

Formula for multimode coherence,  all modes having same 

azimuthal power distribution function P(6). 

Comparison of (7.7) with (5. 11) shows that (Multimode 

coherence)  =    Q (f) X (Single-mode coherence),  where 

Q   = 

M 

m=0 
m .m 

M 
1 
M M     ,        12 
E $m-i; Km   $m 
n=0 rK=0 I        ' 

(7.8) 

tm 
is a function depending only on the autopower spectra $     and modal horizontal- 

vertical transfer functions K    .    Since we have already investigated single-mode 

coherence in Sections III through VI,  the study of multimode coherence for the 

case that all modes ta   e the same azimuthal power distribution function reduces 

to a consideration of the function Q(f), 

Detailed examination of the behavior of Q(f) for realistic 

's and K    's has 

make a few elementary remarks. 

choices cf the $    's and K    's has not been carried out.    However»  we   can 

First,  it should be noted that the presence of more than one 

mode always results in a reduction in coherence from the single-mode case. 

For,  xt follows from Holder's inequality that (for real frequencies) 0 ^ Q (f) ^ I 

Furthermore,  assuming all $     to be non-zero,  we have Q(f) < 1 unless K    = K 

• .  .  - K 
m 
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In a physical situation    it is extremely unlikely that all the 
,m 

transfer functions K     would be equal,  or nearly so.    Approximately,  we 

might expect that there would exist positive constants R   ,  R  ,  .   .  .,  R 
0       1 M 

such that over a fairly broad band of frequencies we have 

K 
m 

=   ±iR    ,m = 0,   1,...,M 
m 

Take as an example the case M = 1 (two modes),  and let $    = $  .    Let R 

be any positive number.    Table VII-1 shows values of Q computed by 

(7. 8) for several choices of K , K  . 

Table VII-1 

VALUES OF Q FOR TWO-MODS OASS,   *0   =   f1 

Ko Ki Q 

+ i R 

+ i R 

+ i R 

+ i R 

+ i R 

+ 2 i R 

+ 5 i R 

+ bi R 

1 

9/10 

9/13 

(b-f-l)2/2(b2 + l). b>0 

+ i R - i R 0 

Table VII-1 illustrates a general principle, which is 

roughly as follows: the reduction in coherence due to additional modes is most 
,m severe in the case that some of the K    !s represent +90    phase shift   and others. 

m. 
a -90° phase shift; for frequencies where all K    's have the same phase response, 

the effect is less marked.    Indeed, for the two-mode case, we get as low a» 

Q a 0 if K    and K    have opposite phase responses,  whereas Q >'r if K    and K 

have the same phase responses. 
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I 
Given an azimuthal power distribution function P(9) it is 

apparent that if several modes are present with approximately equal power 

in each mode,  then the coherence is likely to be substantially reduced from 

that for a single mode with the same distribution Pf^).    On the other hand, 

in closing this section it should be remarked that it also follows from (7,8) that 

if one mode—sry, the fundamental Rayleigh mode--accounts for all but a small 

amount of the total power, then there will be very little reduction in coherence 

from the single-mode case. 
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SECTION VIII 

DISCUSSION 

In the preceding sections,  mathematical formulae have been 

derived for the noise-rejection properties of a 2-component seismometer, 

consisting of 1 vertical-component and 1 horizontal-component instrument 

at the same point.    For most applications,  this system may be considered 

equivalent to a 3-component seismometer.    It is possible to design a 

processing system wherein different filters are applied to the outputs of 

2 horizontals and the noise estimate is obtained by summing the filter 

outputs.    This case is not covered by the development of Part I,   but the 

simpler case,  in which the horizontal outpus are summed and then a 

filter is applied,  has been treated explicitly.    This is because an arbitrarily 

weighted sum of 2 horizontal components of ground motion must always be 

equivalent to a single component in a direction defined by the weights. 

Some general conclusions may be stated regarding the 

usefulness of a single horizontal-component instrument for eliminating 

noise from the output of a /ertical instrument at the same location.    It 

would appear that such effects as system noise,  gain fluctuations and Love 

waves need not present serious problems,  although in some cases they 

may very well do so.    The most important consideration is usually the 

properties of the noise to be eliminated.    If significant noise rejection is 

to be achieved,  then some rather stringent conditions must be satisfied. 

Even when there is only a single-noise mode present,  it is essential that the 

azimuths of the noise sources be confined within a range somewhat less 

than 180° and that the horizontal be oriented near the center of th;* range. 

This requirement follows from the obvious fact that a filter which cancels 

out noise traveling in a given direction must also amplify noise traveling in 

the opposite direction.    In practice,   such extreme directional properties 

are seldom found. 
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If more than one noise mode is important,  large differences 

in the horizontal-to-vertical transfer functions,  k{t),  cannot be permitted. 

In Section VII,  a two-mode situation is presented in which no noise rejection 

is possible because one mode is characterized by a prograde particle motion 

and the other is associated with retrograde motion. 

With a 3-component seismometer at point location,  it is 

theoretically possible to determine both the direction of propagation and 

the shape of the particle orbit for an observed Rayleigh wave.    However, 

the sense of propagation and the sense of the orbital motion cannot be found 

unless a spatial separation is introduced into the system.    For this reason 

it is concluded that ordinary 3-component systems offer little promise for 

most applications and that attention must be directed toward arrays of 

horizontal- and vertical-component seismometers. 
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SECTION IX 

FORMULAS FOR ARRAY RESPONSE IN SINGLE-MODE 
NOISE WITH ARBITRARY AZIMUTHAL POWER DISTRIBUTION 

A.    DESCRIPTION OF ARRAY 

Let O be the origin of an X-Y coordinate system in the plane 

of the earth's surface.    Wo consider an array of seismometers consisting 

of a vertical seismometer v located at O, and M horizontal seiamometers 

h.,  h_,  .  .  .   ,  hw,  where the m     horizontal seismometer h     is located 
i      c M m 

at the point P     having polar coordinates (r    ,  p   ), and h     is oriented in 
m m      m m 

the direction i|i     (Figure IX-1). 
m 

r 

. 

Figure IX-1.   Generalized Seismometer Array 
Configuration 
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B.   ASSUMPTIONS ABOUT THE NOISE FIELD 

We wish to examine,  for this array,  the extent to which 

noise on the vertical can hit predicted from noise on the horizontals in 

single-mode trapped noise.   Wemake the same assumptions about the 

noise field as we did in Section III, plui' two additional assumptions, 

stated below.    To simplify the calculations,  let us start with a continuous 

azimuthal power distribution function P{9), bearing in mind that this is the 

limiting case of a discrete azimuthal ^ower distribution function.    Recalling 

our previous notation,  we have 

P(9)   » azimuthal power distribution function (9. 1) 

*(f)    s inline horizontal autopower spectrum 

K(f)    a inline horizontal-vertical transfer function 

As mentioned above,  we will make two additional assumptions 

about the noise field; these assumptions are not stringent, and they are made 

in order to allow us to derive simple expressions for the crosspower spectra 

between spatially separated seismometers.    We assume 

(1) Noise from each direction propagates in plane waves 

(2) Let h and h1 be the outputs of two horizontal seismometers 

located at points A and B respectively; let r be the vector 

beginning at A and ending at B; let both seismometers be 

pointing in the direction r .    Then for a single noise source 

generating waves traveling in the directior r,  we have 

h'   a   q@h, the Fourier transform of q(t) being (9. <*) 

Q(f)   » exp(2ni r k(f)), where r   « |r |, (9.3) 

k   - wave number 

See Laster et al 
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Assumption (1) requires that the distance to the noise sources 

not be small relative to the array dimensions,  while assumption (2) demands 

that inline horizontal motions at two separated points be related by a transfer 

function Q(f) which is pure phase shift at all frequencies. 

C.    CALCULATION OF AUTOPCWER AND CROSSPOWER SPECTRA 

Returning to our array of seismometers v,  h  ,   .   .   . ,  h    , 

leu us derive formulas for 

i      ,   i      ,   etc. 
mn      vm 

Let us first compute the crosspower spectrum between h     and 

h  ,  horizontal seismometers located at P     = (r    ,   p    ) and P    = (r  ,   p ) 
n m m      m n n      n 

respectively,  and having orientations t     and iji    respectively. 
m n 

Let 9 be an angle,  and let X      and X    be the components of 
m n 

horizontal motion in the direction 6 at P     and P    respectively, due to noise 
m n ^———  

from a single source at azimuth 9,  and temporarily let h     and h    denote 
m n 

the contribution from this single source to the seismometer outputs. 

Then 

m 

n 

■cos (9 -   t|f    )  X 
m      m 

•cos (9 -   f )  X 
n      n 

(9.4) 

and,  by assumptions (1) and (2), 

X      = q® X 
m n 

where the Fourier transform of q(t) is 

Q(f) = exp   2rr i   k(f)   (r     cos(9 - P    )    -r    cos(e-P)) 1 m m n n    i 

(9.5) 

(9.6) 
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Therefore,  for a single wave from direction 9,  we have,  by 

(?. 4) - (9.6) that 

$        =   cos (9 - lb   ) cosfrf - to ) $.      , 
mn m n      A.      A. 

m    n 
(9.7) 

=   cos (9 - f   ) cos (9 -   to ) Q $.     , m n A.     A 
n   n 

cos(9 - i];   ) cos{9 - to ) exp Izrr i k (r    cos(9-p   ) 
m n I m m 

r   cos(9 - P )) I    $. n n ' !      A. X n   n 

Crosspower spectrum for 
single source 

To obtain the crosspower spectrum for the sum of no *    f     -n 

all sources,  we set ^\    \    - P(9),f in (9.7) and integral, over all values of 

9 from -TT to TT. n n 

Therefore the crosspower spectrum between h     ar    h   in a 
m n 

single-mode noise field with azimuthal power distribution function P(9) is 

i       =   $ cos(9-i|f   ) cos(9 - t ) exp  Izn i k (r     cos(9-p    ) (9.8) 
mn J.n m n ' '  m m 

-r    cos(9 - D ))| P(9) d9 
n n /J 

In case m = n,  (9. 8) reduces to 

* =   * cos2 (9- t   ) P(9> d9 
mm J.n m 

[Cf.  Eq.   3. lOJ 

(9.9) 
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A sirmlar computation yields 

$        = -K $ I        cos {9 - 'J;    ) exp Izn i k r     cos(^ - P    )| P(e) d c 

vm J_n m       r i m ml 

where Kff) is the horizcntal-verticdl transfer function.    (See Eq.   9. 1). 

(9.10) 

. As before (Eq.   3. 12), 

$     =   IK|   $ 
vv (9.11) 

D.    PREDICTION FILTERS 

The optimum prediction filter transfer functions G    , 
m 

m s It   2,   .   .   .   ,  M,   are determined by the system of equations (Burg,   1964) 

11 12 .   .   $ 

Ml 

IM V 
• 

• 

= 

$ 1 vl 

MM >. vM 

(9. 12) 

where the I      ,   i       are given in Equations (9.8) - (9. 10). mn      vm 0 ^ x       /      v        /. 
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-4» SECTION X 

ISOTROPIC SINGLE-MODE NOISE 

In this section we shall consider the theoretical capability of 

particular arrays of spatially separated horizontal seismometers for pre- 

dicting a vertical component of single-mode Isotropie noise.    Array geo- 

metries will be specified by use of the parameters r    ,   p    ,   i]/    ,  and 
m      m      m 

use will be made of formulas (9. 8) - (9. 12). 

A.    INTEGRAL REPRESENTATIONS OF BESSEL FUNCTIONS 

• I 

In order to simplify the expressions which will be obtained 

in this section, the following integrals are useful.    Watson (p.  41) gives the 

following form for Poisson's integral representation of the Bessel function 

of first kind and of order v. 

Noting taat 

J   (z) 
v 

2(z/2)V 

IT / 
TT/2 

2v cos(z cos 6) sin      G d9 (10.1) 
r(v+y) r^)   o 

r(y)   =   7^ andr(3/2)   =   yftlz, 

J0(z)   = "I f cos(z cos 9) d6    =   j—J      cos(z cose)d9 (I0,2) 

J^z) 
= —   j cos (z cos 9)sin    9d9 = — I     cos(z cos 9) sin    9   d 9 

(10.3) 

Webster (p.  322) givee, the recurrence relation 

JI(z) 1 —    =   j    fj0(z) + J2(Z)| 

X-l 
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1 
Hence, 

-j       cos (z cos 9) sin2 9 de  =   1    f J0 (z) + J,, (z)j (10.4) 

Subtracting (1C.4) from (10.2),  we obtain 

n 
j^  J       cos (z cos 9) cos* 9 dB = i-   [j0 (z) - J2(z)| (10. 5) j 

Webster (p.  322) also gives the relation | 

d7   '   JoM = •J^z) 

Hence,  differentiation of (10.2) yields 

1   f17 

r—- cos 6  sin (z cos 6) de =   J.fz) 
_TT 

B.    2-CHANNEL SYSTEM: SEPARATED VERTICAL AND HORIZONTAL 

Recall from Section III that no prediction of a "ertical 

component from a horizontal component located at the same point is possible 

in isotropic noise.     This fact is one of the most severe limitations on the 

potential use of two-component seismometers at point location,  since the 

noise at many recording stations appears to be marly isotropic. 

However,  a portion of noise on a vertical seismometer can 

be predicted from a spatially separated horizontal seismometer,  even in 

isotropic noise; it is thia fact that motivates the study of arrays of the 

general type discussed in the last section. 

Let us begin by examinirg the prediction capabilitv of the 

following syfotem in single-mcde isotropic nMse" 

ll 
I'l 

i] 
ii 
ii 
ii 
II 
ii 
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SYSTEM 0:   Vertical seismometer v located at the origin O, and 

a single horizontal seismometer h at distance r from the origin,  with 

azimuth p  =  0,  and orientation ty.    (Figure X-l) 

Since the noise is Isotropie,  we substitute P(9) = —   in 

formula (9. 10) to obtain f  . .    We get 
vh 0 

TT 
* "K*    f /n      ,.    i2TTrkcos6,- lln  „v 

vh   =   FTT'J       
COS

 
(8 " ^ e de <l0"7> 

"TT 

•IK*     '" 
=  ~2jr~   I      cos ^ cos  * sin (ZTTrk cos 9) dG 

-TT 

=   -iK$   •   cos Jl (2n rk) 

^ow,  by (9. 9) and (9. 10) we have 

hh       2TT J       cos 
•TT 

2 (6 - \|f) d9   = j   $ (10.8) 

$       =     K        * 
vv ' 

Therefore the coherence between v and h for system 0 in a 

single-mode Isotropie noise is 

,2 

C   = 
vh 

$     $ =   2 cos    t   [J1(2nrk)| 
vv hh 

■<>■ 

Figure X-I.    Geometry of System 0 X-3 
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Notice in (10.9) the dependence of coherence on f,  the 
TT 

horizontal seismometer orientation angle.    For t  = i^Ti  we have C = 0; 

and for i|(  =   0,  T1 we have the maximum coherence, 

Z 

I 
i 
1 

C   s   2   J^ZTTrk) (10.10) 

Let us give the name System 1 to the special instance of 

System 0 when i|r = 0 (Figure X-2).    In Table X-l,  the prediction error 

1-C for System 1,  where C is calculated by (10.8),  is given as a function 

of 2TT rk.    With this two-channel system,  we get a prediction error as low 

as 0. 324,  for 2nrk   =1.8. 

C.    MULTIPLE-HORIZONTAL ARRAYS 

Since parf of the vertical component of single-mode Isotropie 

noise can be predicted by a single spatially separated horizontal seismometer, 

one should expect that very good performance might be achieved by imple- 

menting multichannel prediction using a large enough number of additional 

horizontals,  arranged in a suitable geometry.    To   nvestigate this possibility, 

let us consider the arrays shown in Figure X-2.    The array parameters are: 

SYSTEM 1.    bjt r1    = r,    p1   r   ^   =   0 H-11) 

SYSTEM 2.   h:r     =r,   p     =i|f     =   ^—^ , ms 1,2 
^~~~—'—~~~~—-    mm mm c 

SYSTEM 3.   h:r     = r,   p     =i|i     = .uSlilH f  m = 1, 2, 3 
       mm mm i 

SYSTEM 4.   h    :r     =r,p    = if    = mn,  m = 1, 2 
■^^—~~—""—■•      mm mm 

SYSTEMS.   h:r     =r. p     s *     = 2—-, m =1,2, 3.4 —————      mm m       m Z 

SYSTEM 6.   b    : r     =r. p     =   t^ = ~ .   m = 1,2.3,4,5,6  J 

SYSTEM 7.   h    : r     = r,  p    =   \|f      = -^.  m = 1,2.3 fi —————       mm mm i 

I 
a 
i 

In all of these systems, the horizontals are place at the same 

distance,  r, from the vertical seismometer location,  and the horizontals are I 

oriented so that they point away from the vertical,  i. e. ,   i|»  =  p. 

I 
X-4 
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SYSTEM 1 

®   • ► 

SYSTEM 3 

\ / 

®   • ► 

SYSTEM 5 

i i 

® 

'' 

SYSTEM 2 

/1 

®   • ► 

SYSTEM 7 

SYSTEM 4 

-* •   ® 

SYSTEM 6 

\ / 

-< .   ® 

/ \ 

\ 

®   •——► 

/ 

Figure X-2.    Array Geometries 
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Table X-l 

PREDICTION ERROR FOR SYSTEM 1 

Dimensionless Wavenumber, 

2nr-k 
(radians) 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1.4 

1.6 

1.8 

2.0 

2.2 

2.4 

2.6 

2.8 

3.0 

3.2 

3.4 

3.6 

3.8 

4.0 

Prediction Error 

(1-C) 

1.0 

0.980 

0.923 

0.836 

0.728 

0.613 

0.503 

0.413 

0.350 

0.324 

0. 335 

0.382 

0.459 

0.557 

0.664 

0.770 

0.863 

0.936 

0.982 

1.000 

0.991 
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The decision to restrict our attention to such outward- 

pointing arrays is motivated by the following fact:   let us be given a set of 

points P.,  P'      .... P,, in the X-Y plane.    Then amons all arrays 
I       c M 

V,  h. ,  h_,   .   .   . ,  h. such that the vertical v is located atO and the 
1      /. M 

horizontals h     are located at P    ,  m = 1,  2 M,  with h     having 
mm m 

arbitrary orientation angle l|/    ,  the array which gives the best multi- 
m 

channel prediction performance in single-mode isotropic noise is the 

outward-pointing array,  that is,  the array for which ilf     = p     for all m. 
mm 

This follows from the fact that maximum coherence between separated 

vertical and horizontal in single-mode isotropic noise occurs when the 

horizontal is outward-pointing (Formula 10.9). 

Having restricted ourselves to outward-pointing arrays, 

we further restrict this preliminary investigation to arrays in which 

all of. the horizontals are at equal distance from the vertical because,  for 

an array of outward-pointing horizontals h     at equal distance from the 
m 

vertical v, the theoretical optimum prediction filters G     to predict 
m 

v from the h    's in isotropic noise are quite easy to compute.    In fact, 

for each of the Systems 1,  2,  4,   5,   6,  and 7 it is obvious that all of the 

prediction filters are equal,  because of symmetry both in the noise field and 

in the array geometries.    Hence,  it is necessary to design but one prediction 

filter for each of these arrays,  and in each case apply this filter to the 

summed outputs of all the horizontals.     Therefore, the minimal prediction 

error for these systems is simply 

Prediction error = 1 -C 
vs 

(10.12) 

where s = summed output of horizontals,  and C      = coherence between v and s. r vs 

1 
1 

X-7 
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One can obtain expressions for C      in terms of Eessel 
vs 

functions for each of the systems 1-7.    In the case of system 3,   I-C 
vs 

may not be the minimal prediction error,   since it is possible that the 

optimum prediction filters for h-, h  ,  h? are not identical. 

In the case of radially-oriented horizontal-component 

instruments on a circle of radius r in Isotropie noise (with total power $), 

the expressions (9.8) and (9. 10) may be simplified,  as follows: 

In (9.8) let 

P <t>+a       s 0 - ilr   s 9 
mn n n 

4)-a      = B - it    =0-p 
mn m m 

u = 2nk r 

P(6) = */2TT 

Thus the crosspewer between two horizontals is 

mn 
=  TZ < cos    a       sin1* «b  - sin   a      cos   <j>> • (10.13) 

t'T J        { mm mn j 
-TT 

• cos(2u sin cc       costj)) d$ 
mn 

=   $ |cos(2a     ) J  (2u sin a      )   +   J (2u sin a      )l A 
( mn     u mn c mn J f 

where 2 (X        = p    - p     is the angular separation between instruments m 
mn       n       m 

and n. 

The crosspower between the central vertical and a 

horizontal is given by substituting in (9. 10): 

6=0-*      =0-p 
m m 

u = 2TT kr, 

X-8 
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giving 
TT 

vm 
■iK$    f A     •    / XI    IX —T—  I       cos <}> sin(u cose})) a$ 

-TT 
(10. 14) 

= -i K $   • J^u) 

The autopower   for a horizontal is   $ =   $/Z.    This 
mm 

mav be verified by setting a        = 0 in (10. 13).    The autopower for the 
mn 

vertical is $      =   [K]
2
 $ as given by (10.8). 

The coherence between the output of the vertical and the 

summed outputs of the horizontals is 

i      •     $ 
_        _     vs sv 

vs $ $ 
vv        ss 

(10.15) 

where 
M 

vs     4-^       vm 
mal 

(10. 16) 

and 

i M K f J^u) 

M        M 

ss     *•*     ***       mn 
m=l    n=l 

= $ 

M     M 
ft   7*   ^cos (2a      ) JA(2u sin a      ) 
"7*, mmmy   \ mn     0 mn m=l n=l 

+ ZAZw sin a      )\ iZ 2 mn ) I 

(10.17) 

for an array containing M horizontals. 

X-9 
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[ 

Thus, 

C 
2M jiH 

(10.18) 

vs       M    M 

E Z   H l^mn' J0(Eu sin W + J
2(2u sina

mn>} 
m=l n=i 

1 
Denoting the coherence for system 1 by C     ,   ..he coherence for system 

2 vs 

2 by C     ,  etc. ,  we have: vs 

(10.19) 

C       =    16 
vs 

vs 

cvs = 4IJH7{1 + J2M} 
Cvs   =    9|J1<U>|7H  +   J0 (u' "I J0 (^u)   + 2J

2(") + J^)} 
Cvs   =   4(j1(u))y{l-J0(2u)+ JE(2u)} 

iJl(u)| /{2 + 4 J
2 (^'u)   +   2J2 (2u) ' 2:r0 (2u,} 

=     36^(^1    /|3+   3J0(u)+   6J2(u) -  3J0   (Jiv) 

+ 6 J2 (#u) + 3 J2 (2u) - 3J0 (2u)| 

The prediction errors (I-C    ) for the seven systems are 
vs 7 

illustra*2d in Figures X-3 through X-9 by the curves labeled "P. E. " 

In addition to the prediction error, there are certain functions which 

determine the usefulness of each array.    It is not sufficient that the 

prediction error be low,  if the power response i      is also low,  since 
S 5 

the optimum prediction filter response is inversely proportional to $ 
s s 

and it is desirable to avoid undue amplification of uncorrelated noise 

appearing on the horizonal outputs. 

I 
1 
I 
! 

I 
1 
I 
I 
I 
I 
I 
I 
I 
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The Love-wave responses are computed as follows: For our 

purposes,  we may consider a Love-wave to be identical to a Ravleigh wave I 

except that the motion is perpendicular to (instead of inline with) the direction 

of propagation and there is no vertical component of motion.   Assume a I 

uniform power distribution   A/2TT.    Since there is no vertical component, 

vm vv ■ 

Since the horizontal motion is now transverse,  the factors 

A measure of the amplification of Rayleigh noise relative to 

uncorrelated noise is shown by the curves marked  'R" in Figures X-3 

through X-9.    The function plotted is the ratio of Rayleigh noise power in 
2 

the average  of the M horizontal outputs {i     /M )  to the Rayleigh noise 
5 S 

power in the output of a single horizontal ($/2).    The corresponding ratio 

for uncorrelated noise is 1/M. 

D.    LOVE-WAVE RESPONSES 

Another important consideration is the response of the 

system to Love waves.    Since the vertical instrument is insensitive to 

Love waves,  any Love energy which appears in the average of the hori- 

zontals will lead to erroneous prediction of noise on the vertical.    It is 

therefore desirable that the system be as insensitive as possible to 

Love waves.    In Figures X-3 through X-9, the curves labeled "L" 

show the ratio of Love noise power in the a/erage of the M horizontal 
2 

outputs ( A    /M ) to the Love noise power in the output of a single 
ss 

horizontal. 

cos(Q -   f   )   and cos (9 -   \|r ) in equation (9. 8) must be replaced by 
m n 

sin (9 -   i|f   ) and sin (9 -   i|f ).    By means of the same substitutions as 
m n 

were used to obtain Equation (10. 13},  we derive the analogous expression 

X-18 
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A mn 
A    f       1       2 2 2 2   j =   T^T <ccs   a      cos  <j>   -   sin   a      sin   M cos(2u sin a.      cos (b) (16 

Zn JmU    \ mn T mn Y(        x mn       Y/    Y 

=   Aicos(2a     )JA(2usina      ) - J0(2u sin a     )\/z 
I mn     0 mn 2 mn 1/ 

The power spectrum for the sum of M horizontals is 

ss -tt   { 
m=l   n=l 

cos (2a      ) J    (2u sin a     ) 
mn     0 mn' 

J0(2u sin a     )i / 2 
2 mn j / 

Rayleigh-wave response functions $     /$    for the 7 systems 
ss 

are given by the denominators in Equations (10. 19).    Corresponding Love- 

wave response functions A    /A   may be obtained by changing the signs 
s s 

of all terms in the corresponding Rayleigh functions which contain 

Bessel functions of order 2. 
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SECTION XI 

CONCLUSIONS 

r 
I 

Theoretical results obtained in this study indicate that arrays 

of horizontal-component seismometers should prove to be useful tools for 

the removal of trapped-mode noise from the outputs of vertical-component 

instruments.    A necessary condition is that the horizontals must be spatially 

separated from the vertical.    In the case of a single-noise mode,  arrays 

such as those studied in Section X should perform best when the array 

diam      r is approximately one-half wavelength.    Signal enhancement 

systems employing only vertical instruments require,  in general,  array 

diameters of at least one wavelength.    Thus,  multicomponent arrays should 

offer meaningful advantages in terms of land and telemetry requirements. 

It is unlikely that difficulties presented by system noise, 

uncorrelated seismic noise and Love waves should be any more serious 

than they are in the case of vertical-component arrays.    The effect   of 

additional noise modes on multicomponent array performance has not been 

studied yet.    However,  it is reasonable to assume that a multiplicity of 

modes may be dealt with by the application of multichannel filter techniques 

to the outputs of rings of horizontals.    It has been shown that an array 

consisting of a number of rings of verticals can be useful in the presence 

of a similar number of noise modes, and there is no known reason for 

assuming that this usefulness might be a property peculiar to vertical- 

component arrays. 
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The results derived theoretically for multicomponent 

seismomter arrays are quite conducive to optimism.    Referring to 

Figures X-7 and X-8,  it can be seen that,  ii the array dimensions are 

suitable (r/X~0.25),  the theoretical prediction error is less than 0.01, 

the Love wave response function is less than 0. 0! and the Rayleigh wave 

response function is approximately 0.7.    Thus,  it is theoretically possible 

to predict (and hence remove) more than 99 percent of the Rayleigh noise 

on the vertical component in the frequency range in which the wavelength 

is appropriate.    The low value of the Love wave response function implies 

that very little extraneous noise power should be introduced into the 

system output as a result of Love waves appea-ing in the outputs of the 

horizontal instruments.    The high value of the Rayleigh wave response 

function implies that the filter responses need not be unduly large and 

that uncorrelaled noise from the horizontals will not be amplified to a 

serious degree.    The finding that all three response functions take on 

desirable values in the same range of wavelength is both unexpected 

and fortuitous. 

From the results of the theoretical investigations reported 

in this report,  it is concluded that multicomponent seismometer arrays 

offer a great deal of promise for signal enhancement applications.    It 

is recommended that experime»-'' I investigations of such systems be 

undertaken as soon as possible. 
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